AC- 5.05.2018 Item No. 4.53

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics and Telecommunication Engineering

Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Course	Course Name		hing Scho ntact Hou		Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC601	Microcontrollers & Applications	4	-		4		4	
ECC602	Computer Communication Networks	4	-	-	4	-	4	
ECC603	Antenna & Radio Wave Propagation	4	-	-	4	-	4	
ECC604	Image Processing and Machine Vision	4	-		4		4	
ECCDLO 602X	Department Level Optional Course II	4	-	-	4	-	4	
ECL601	Microcontroller & Applications Lab	-	2	-	-	1	1	
ECL602	Computer Communication Network Lab	-	2	-	-	1	1	
ECL603	Antenna & Radio Wave Propagation Lab	-	2	-	-	1	1	
ECL604	Image Processing and Machine Vision Lab	-	2	-	-	1	1	
ECLDLO 602X	Department Level Optional Lab II	-	2	-	-	1	1	
	Total	20	10	-	20	5	25	

		Examination Scheme								
Course				The						
Code	Course Name	Interna	al Assess	sment	End Exam		TW	Oral &	Total	
		Test1	Test 2	Avg	Sem Exam	Duration (Hrs)		Prac	I Utai	
ECC601	Microcontroller& Applications	20	20	20	80	03			100	
	Computer Communication Network	20	20	20	80	03			100	
ECC603	Antenna & Radio Wave Propagation	20	20	20	80	03			100	
ECC604	Image Processing and Machine Vision Lab	20	20	20	80	03	-		100	
	Department Level Optional Course II	20	20	20	80	03			100	
FULOUI	Microcontroller & Applications Lab						25	25	50	
	Computer Communication Network Lab						25	25	50	
FC1.603	Antenna & Radio Wave Propagation Lab						25	25	50	
ECL604	Image Processing and Machine Vision Lab						25	25	50	
	Department Level Optional Lab II						25		25	
	Total			100	400		125	100	725	

Course Code	Department Level Optional Course II
ECCDLO 6021	Digital VLSI Design
ECCDLO 6022	Radar Engineering
ECCDLO 6023	Database Management System
ECCDLO 6024	Audio Processing

Subject Code	Subject Name	Т	eaching S (Hrs		Credits Assigned				
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial	Total
ECC601	Microcontroll	· · · · · · · · · · · · · · · · · · ·			04				04
	ers &								
	Applications								
	_			_					
				Exami	nation Sch	eme			
Subject	Subject		Theor	ry Marks			Term Practical Oral Tot		
Code	Subject Name	Inte	ernal asse	ssment					Total
Coue	1 (unite				End Sem.	Work	& Oral	Ula	Iotai
		Test 1	Test2		Exam				
ECC601	Microcontrol	20	20	20	80				100
	lers &								
	Applications								

Course objectives:

- To develop background knowledge and core expertise in microcontrollers.
- To understand peripheral devices and their interfacing to microcontrollers.
- To write programs for microcontrollers and their applications in Assembly and Embedded C Language.

Course outcomes:

- Understand the detailed architecture of 8051 and ARM7 microcontroller.
- Study the in-depth working of the microcontrollers and their Instruction set.
- Interface various peripheral devices to the microcontrollers.
- Write Assembly language and Embedded C program for microcontrollers.

Module No.	Unit No.	Topics	Hrs.
1.0		8051 Microcontroller	12
	1.1	Comparison between Microprocessor and Microcontroller	
	1.2	Features, architecture and pin configurations	
	1.3	CPU timing and machine cycle	
	1.4	Input / Output ports	
	1.5	Memory organization	-
	1.6	Counters and timers	-
	1.7	Interrupts	_
	1.8	Serial data input and output	
2.0	1.0	8051 Programming	08
2.0	2.1	Instruction set	00
	2.2	Addressing mode	
	2.3	Assembler Directives	
	2.4	Programs related to : arithmetic, logical, delay, input, output, timer,	
		counters, port, serial communication, and interrupts	
3.0		8051 Interfacing and Applications	06
5.0	3.1	Interfacing of Display: LED, LCD and Seven Segment display	00
	3.2	Stepper Motor and Relay	
	3.3	UART	_
4.0		ARM7: A 32 bit Microcontroller	08
	4.1	The RISC and the CISC design philosophy	00
	4.2	Concept of Cortex-A, the Cortex-R and the Cortex-M	-
	4.3	Features of ARM Microcontroller	_
	4.4	Pipeline Architecture	_
	4.5	Registers	
	4.6	Exceptions, Interrupt and Vector Table	
	4.7	Memory Management	
5.0	/	ARM7 Programming	08
5.0	5.1	Data Processing Instructions	00
	5.2	Conditional and Branching Instructions	_
	5.3	ARM-THUMB Interworking	
	5.4	Single-Register Load-Store Instructions	_
	5.5	Stack Instructions	_
	5.6	Software Interrupt Instructions	1
6.0		ARM Programming with Embedded C	06
	6.1	General Purpose Input Output	
	6.2	Timer Mode	-
	6.3	Pulse –Width Modulator Configuration	-
	0.0	Total	48

- 1. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller & Embedded systems", Pearson Publications, Second Edition 2006.
- 2. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C' ", Cengage Learning, Edition 2010.
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. Andrew Sloss, Dominic Symes, and Chris Wright, "ARM System Developer's Guide" Morgan Kaufmann Publishers, First Edition 2004.
- 5. Lyla Das, "Embedded Systems: An Integrated Approach", Pearson Publication, First Edition 2013
- 6. James A. Langbridge, "Professional Embedded Arm Development", Wrox, John Wiley Brand& Sons Inc., Edition 2014

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs		Credits Assigned				
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial	Total
ECC602	Computer	04			04				04
	Communicati								
	on Networks								
		•	•			•	•		
				Exami	nation Sch	eme			
Subject	Subject		Theor	ry Marks					
Code	Subject Name	Inte	ernal asse	ssment		Term	Practica	oral Oral Tot	
Coue	1 (unite			Avg. Of Test	End Sem.	Work	& Oral	Ula	Total
		Test 1	Test2	1 and Test 2	Exam				
ECC602	Computer	20	20	20	80				100
	Communicati								
	on Networks								

Course Pre requisite:

• Analog Communication

Course objectives:

- To introduce analysis and design of computer and communication networks.
- To design and configure a network for an organization. To implement client-server socket programs.
- To analyse the traffic flow and the contents of protocol frames.

Course outcomes:

- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications.
- Learn to simulate computer networks and analyse the simulation results.
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model.
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction	06
	1.1	Network Applications	
	1.2	Network Hardware	
	1.3	Network Software	
	1.4	Reference Models, overview of TCP/IP, layer Functions, services,	
		sockets and ports, Encapsulation.	
2.0		Introduction to Physical layer Services and System	08
	2.1	Introduction to physical media, Coax, RJ 45, fiber, twisted pair, DSL, HFC, WiMax, cellular, satellite, and telephone networks, bit transmission, frequency division multiplexing. time division multiplexing.	
3.0		The Data Link Layer	08
	3.1	Data link Layer Design Issues	
	3.2	Error Detection and Correction	
		Elementary Data Link Protocols, Sliding Window Protocols	
		Example Data Link Protocols: HDLC: High-Level Data Link Control,	
		The Data Link Layer in The Internet.	
4.0		The Medium Access Sub- Layer	06
	4.1	Channel Allocation Problem.	
	4.2	Multiple Access Protocols.	
5.0		The Network Layer	10
	5.1	Network Layer Design Issues.	
	5.2	Routing Algorithms.	
	5.3	Congestion Control Algorithms, Quality of Service.	
	5.4	Internetworking.	
	5.5	The Network Layer In The Internet: The IP Protocol, IPv4 header, IP Addressesing, Subnetting.	
	5.6	Internet Control Protocols, The Interior Gateway Routing Protocol:	
		OSPF, The Exterior Gateway Routing Protocol: BGP.	
6.0		The Transport Layer	10
	6.1	The Transport Service.	
	6.2	Elements of Transport Protocols.	
	6.3	The Internet Transport Protocol: UDP	
	6.4	The Internet Transport Protocol: TCP:-Introduction to TCP, The TCP	
	0.4	Service Model. The TCP Protocol.	
	6.5	The TCP Segment Header.	
		TCP Connection Establishment, TCP Connection Release.	
	6.6	I CI Connection Establishment, I CI Connection Release.	
	6.6 6.7		
	6.7	Modeling TCP Connection Management.	

Total	48
-------	----

- 1. A. S. Tanenbaum,"Computer Networks", 4th edition, Prentice Hall
- 2. B. F. Ferouzan,"Data and Computer Communication", Tata McGraw Hill.

Reference Books:

- 1. Peterson & Davie, "Computer Networks", 2nd Edition, Morgan Kaufmann.
- 2. Kurose, Ross, "Computer Networking", Addison Wesley
- 3. S. Keshav, "An Engg, Approach To Computer Networking", Addison Wesley.
- 4. W. Richard Stevens, "TCP/IP Volume1, 2, 3", Addison Wesley.
- 5. D. E. Comer, "Computer Networks And Internets", Prentice Hall.
- 6. B. F. Ferouzan, "TCP/IP Protocol Suite", Tata McGraw Hill.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs.		Credits Assigned				
		Theory	Theory Practical Tutorial Theory Practical Tuto						Total
ECC603	Antenna & Radio Wave	04			04				04
	Propagation								
					nation Sch	eme	Γ	1	
Subject	Subject		Theor	y Marks					
Code	Name	Inte	ernal asses			Term	Practical		
Coue		Test 1			End Sem. Exam	Work	& Oral		IUtai
ECC603	Antenna &	20	20	20	80				100
	Radio Wave Propagation								

Prerequisites:

- Electromagnetic Field
- Two port network
- Transmission Line

Course objectives:

- To learn fundamental parameters of Antenna
- To learn about linear wire antenna elements and Antenna arrays
- To learn about Special types of Antennas
- To learn about Antenna measurements and radio wave propagation

Course outcomes:

- Define Basic antenna parameters like radiation pattern, directivity and gain.
- Derive the field equations for the basic radiating elements like linear wire antenna and loop antenna.
- Design of uniform linear and planar antenna arrays using isotropic and directional Sources.
- Implement special types of Antennas like microstrip antennas and reflectors.

Module No.	Unit No.	Topics	Hrs.
1.0		Antenna Fundamentals	08
	1.1	Introduction, Radiation Mechanism, basic antenna parameters, Radiation pattern, radiation power density, radiation intensity, Beamwidth, directivity, Antenna efficiency, Gain, beam efficiency, bandwidth, polarization, input impedance, antenna vector effective length and equivalent areas, Antenna radiation efficiency, FRIIS transmission equation	
	1.2	Basic concepts of Maxwell's equation, vector potential, wave equation, near field and far field radiation, dual equations for electric and magnetic current sources.	
2.0		Wire Elements: Dipoles, Monopoles, Loops and Helical	12
	2.1	Infinitesimal dipole, radiation fields, radiation resistance, radiation sphere, near field, far field directivity, small dipole, finite length dipole, half wave length dipole, linear elements near or on infinite perfect conductors, Monopole antenna, Folded dipole. Design of dipole and monopole antenna	
	2.2	Loop Antenna: Small circular loop, comparison of small loop with short dipole, Ferrite loop, radiation patterns its parameters and their application.	
	2.3	Helical Antennas: Input impedance matching, Axial mode and normal mode propagation, Circular polarization using Helical Antenna	
3.0		Arrays	12
	3.1	Linear arrays, Array of two isotropic point sources, linear arrays of N elements, principle of pattern multiplication applicable to non- isotropic sources, Phase scanning arrays, broadside and End-fire Array, Increased Directivity end fire array, Calculations of Directivity, Beam width, Maxima and null directions for N-element Array.	
	3.2	Introduction to planner and circular arrays	
	3.3	Design of Yagi antenna and Log Periodic antenna	
4.0		Aperture Antennas	06
	4.1	Horn Antennas :E-Plane Sectoral Horn, H-Plane Sectoral Horn, Pyramidal Horn, Conical Horn	
	4.2	Reflector Antennas: Introduction, Plane Reflector, Corner Reflector, Parabolic Reflector, Design considerations	
5.0		Patch Antenna	04
	5.1	Microstrip antenna (MSA): Introduction, Feeding Techniques, Regular Shape MSAs (Rectangular, Circular, Equilateral Triangular), Design of Regular shape MSAs	

6.0		Antenna Measurements & Wave Propagation	06					
	6.1	Antenna Measurements: Measurement of Antenna parameters:						
		Input Impedance, Radiation Pattern, Gain (Two and Three antenna						
	method), Polarization.							
	6.2	Ground Wave Propagation: Ground waves, effect of Earth's						
		Curvature on Ground wave propagation, impact of imperfect earth						
	6.3	Sky Wave Propagation						
		Ionosphere and Earth magnetic field effect, Critical frequency, Angle						
		of incidence, Maximum usable frequency, Skip distance, Virtual						
		height, Variations in ionosphere and Attenuation and fading of waves						
		in ionosphere						
	6.4	Space Wave Propagation						
		Total	48					

- 1. C. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken, NJ, 2005.
- 2. J. D. Kraus, R. J. Marhefka, A.S. Khan "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011
- 3. G. Kumar, K. P. Ray, Broadband Microstrip Antenna, Artech House, 2002.

Reference Books:

- 1. Stutzman, Theile, "Antenna Theory and Design", John Wiley and Sons, 3rd Edition
- 2. R. E. Collin, "Antennas and Radio Wave Propagation", International Student Edition, McGraw Hill.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs		Credits Assigned					
		Theory	Practic	cal Tutorial	Theory	heory Practical		rial	Total	
	Image Processing & Machine Vision	04			04				04	
				Exami	nation Sch	eme				
Subject	Subject	Theory Marks								
Code	Subject Name	Int	Internal assessment			Term	Practical	Oral	Total	
Coue	Code Name						& Oral		ai 10tai	

Test 1Test 21 and Test 2Exam----100ECC604Image20202080----100Processing &
Machine
Vision------100

Prerequisites:

- Signals and Systems
- Discrete Time Signal Processing

Course objectives:

- To cover the fundamentals and mathematical models in digital image processing and Machine Vision
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to classification techniques in Machine Vision
- To develop Applications using image processing and Machine Vision

Course outcomes:

After successful completion of the course student will be able to

- Understand theory and models in image processing.
- Interpret and analyze 2D signals in Spatial and frequency domain through image transforms.
- Apply quantitative models of image processing for segmentation and restoration for various applications.
- Find shape using various representation techniques and classify the object using different classification methods.

Module No.	Unit No.	Topics	Hrs.
1.0		Digital Image Fundamentals	04
	1.1	Introduction – Origin – Steps in Digital Image Processing , Components, Elements of Visual Perception – Image Sensing and Acquisition, Image Sampling and Quantization – Relationships between pixels, Transformation: Orthogonal, Euclidean, Affine	
	1.2	Color Image Processing: Color Fundamentals Color models.	
2.0		Image Transforms	06
	2.1	1-D DFT, 2-D Discrete Fourier Transform and Its Inverse, Some Properties of 2D DFT ,Walsh -Hadamard, Discrete Cosine Transform, Haar Transform	
3.0		Image Enhancement	08
	3.1	Image Negative, Log Transform, Power Law transform, Histogram equalization and Histogram Specification	
	3.2	Spatial Domain : Basics of Spatial Filtering, The Mechanics of Spatial Filtering, Generating Spatial Filter Masks–Smoothing and Sharpening Spatial Filtering	
	3.3	Frequency Domain :, The Basics of Filtering in the Frequency Domain, Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Laplacian, Unsharp Masking and Homomorphic filters	
4.0		Morphological & Image Restoration	06
	4.1 4.2	 Morphology: Erosion and Dilation, Opening and Closing, The Hitor-Miss Transformation. Restoration :Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch 	
5.0		Filters	10
5.0	5.1	Image Segmentation and Boundary Representation Point, Line, and Edge Detection: Detection of Isolated Points, Line detection, edge models, basic and advance edge detection, Edge linking and boundary detection, Canny's edge detection algorithm	
	5.2	Thresholding : Foundation, Role of illumination, Basic Global thresholding	
	5.3	Region Based segmentation : Region Growing, Region Splitting and merging	
	5.4	Region Identification , chain code, simple geometric border representation, Fourier Transform of boundaries, Boundary description using segment sequences, B-spline representation	
6.0		Boundary Description & Object Recognition	12

Texture: Statistical Texture Description Methods- Methods based on spatial frequencies, co-occurrence matrices, edge frequency, primitive length, Law's texture energy measures	
Object Recognition Knowledge representation, Classification Principles, Classifier setting, Classifier Learning, Support vector machine, cluster analysis	
Total	48

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Cengage Engineering, 3rd Edition, 2013
- 2. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,

Reference books:

- 1. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 2. W Pratt, "Digital Image Processing", Wiley Publication, 3rd Edition, 2002

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	T	eaching So (Hrs.		Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tutor	ial	Total	
ECCDLO 6021	Digital VLSI Design	04			04				04	
Examination Scheme										
Subject	Subject	Inte	Theor ernal asses	y Marks		Term	Practical			
Code	Name	Test 1		Avg. Of Test	End Sem. Exam	Work	& Oral	Oral	Total	
ECCDLO 6021	Digital VLSI Design	20			80				100	

Prerequisites:

- Digital System Design
- Microelectronics

Course objectives:

- To highlight the circuit design issues in the context of Digital VLSI technology
- A profound understanding of Digital VLSI design circuits using different design styles.
- To provides an exposure to RTL design and programming

Course outcomes:

- Understand the semiconductor technology, scaling and performance.
- Realize logic circuits with different design styles.
- To understand operation of memory, storage circuits and data path elements.
- Simulate and synthesize digital circuits using HDL language.
- Demonstrate an understanding of system level design issues such as protection, clocking, and routing.
- Learn the RTL design techniques and methodologies

Module No.	Unit No.	Topics	Hrs.
<u>No.</u> 1.0		MOS Circuit Design Styles	10
	1.1	Static CMOS, Dynamic CMOS, Pseudo NMOS, Domino, C ² MOS, NORA logic, NP Domino logic	
	1.2	Realization of Multiplexer (upto 4:1 Mux), Encoder, Decoder, SR Latch, JK FF, D FF, 1 Bit Shift Register with different design styles and their layouts	
2.0		Memory and Storage circuits	08
	2.1	ROM array, SRAM (operation, design strategy, leakage currents, read /write circuits), layout of SRAM	
	2.2	DRAM (Operation of 1T, 3T, operation modes, leakage currents, refresh operation, Input-Output circuits), layout of DRAM	
	2.3	Flash memory: NAND and NOR flash memory	
3.0		Data path design	08
	3.1	Full adder, Ripple carry adder, CLA adder, Carry Skip Adder, Carry Save Adder and carry select adder	
	3.2	Array Multiplier	
	3.3	Barrel shifter	
4.0		VLSI Clocking, Protection and Interconnect	06
	4.1	CMOS clocking styles, pipelined systems, Clock generation, stabilization and distribution	
	4.2	ESD protection, Input circuits, Output circuits, power distribution scheme	
	4.3	Interconnect delay model, interconnect scaling and crosstalk	
5.0		Design methods	08
	5.1	Semicustom, Full custom design, ASIC	
	5.2	PLA, PLD, PAL, FPGA	
	5.3	System based and Data path design using HDL	
6.0		RTL Design	08
	6.1	High Level state machines, RTL design process	
	6.2	Soda dispenser machine, laser based distance measure, Sum of absolute	
	6.3	FIR filter design	
		Total	48
L	1		

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons.
- 3. Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sons Publisher 2011.

- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 5. Samir Palnitkar,"Verilog HDL: A Guide to Digital Design and Synthesis", PHI, Second Edition
- 6. Douglas L. Perry "VHDL: Programming by Example", McGrawHill, 4th Edition

Reference Books:

- 1. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition..
- 2. Volnei A. Pedroni, "Circuit Design and Simulation with VHDL", MIT Press, 2nd Edition

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching S (Hrs		Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial [Fotal	
	Radar	04	04		04				04	
6022	Engineering									
	Examination Scheme									
Subject	Subject		Theor	ry Marks						
Subject Code	Subject Name	Inte	ernal asse	ssment	End	Term	Practical	Oral	Total	
Coue	1 (unite			Avg. Of Test	Sem.	Work	& Oral	Ulai	10141	
		Test 1	Test2	1 and Test 2	Exam					
ECCDLO	Radar	20	20	20	80				100	
6022	Engineering									

Prerequisties:

- Communication Fundamentals
- Electromagnetic field
- Transmission Lines and Antenna

Course objectives:

- To interpret Radar equations
- To explain different types of radar
- To design RADAR transmitters and receivers for given conditions

Course outcomes:

- Explain generalized concept of RADAR.
- Solve problems using radar equations.
- Describe different types of radar for specific application.
- Explain concept of tracking radar.
- Evaluate the design constraints for transmitter.
- Evaluate the design constraints for receiver.

Module No.	Unit No.	Topics	Hrs.					
1.0		Introduction to Radar	04					
	1.1	Basics Radar, Radar equation						
	1.2	Block Diagram, Radar Frequencies						
	1.3	Applications of Radar						
2.0		Radar Equation	08					
	2.1	Detection of signal in noise						
	2.2	Receiver Noise and Signal-to-noise Ratio						
-	2.3	Probability of detection and false alarm: Simple, complex Targets						
	2.4 Pulse Repetition Frequency							
3.0		MTI and Pulse Doppler Radar	12					
	3.1	Introduction to Doppler and MTI radar, Doppler frequency shift	_					
-	3.2	Simple CW Doppler radar, MTI radar block diagram						
	3.3	Delay line canceler						
	3.4	Moving-target-detection						
	3.5	Pulse Doppler radar						
4.0		Tracking Radar	08					
	4.1	Monopulse tracking	_					
	4.2	Conical scan and sequential lobbing						
	4.3	Limitation of tracking accuracy						
	4.4	Low angle tracking	10					
5.0		Radar Transmitters	10					
	5.1	Radar RF power sources: Klystron, Travelling wave tube						
	5.2	Solid state RF power source: low power transmitter, high power transmitter, Advantages of solid state RF power source						
	5.3	Magnetron: coaxial magnetron						
	5.4	Crossed field amplifiers: CFA operation, modulating a CFA, system						
6.0		implementation Radar Receivers	06					
0.0	6.1	Receiver noise figure	00					
	6.2	Superheterodyne Receiver	-					
	6.3	Radar Display: Types of displays						
	0.0	Total	48					
		L VIII	10					

- 1. Merill Skolnik, -Introduction to RADAR Systems, Tata McGraw Hill, Third Edition
- 2. Merill Skolnik, -Radar Handbook, TataMcgraw Hill, Second Edition

Reference books:

- 1. Mark A. Richards, James A. Scheer, William A. Holm, "Principles of Modern Radar Basic Principals", Scitech Publishing.
- 2. Simon Kingsley, Shaun Quegon, "Understanding Radar Systems", Scientech Publishing Inc.
- 3. G. S. N. Raju, "Radar Engineering and Fundamentals of Navigational Aids", I. K International publishing House Pvt. Ltd.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	eaching So (Hrs.		Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial	Total	
6022	Database Management System	04			04				04	
	Examination Scheme									
Subject Code	Subject Name	Inte	ernal asses			Term	Practical	Oral	Total	
Coue	1 (unite	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	UI al	Total	
ECCDLO	Database	20	20	20	80				100	
6023	Management System									

Prerequisites:

• Basic knowledge of programming

Course objectives:

- Learn and practice data modeling using the entity-relationship and developing database designs.
- Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access

Course outcomes:

- Understand the different issues involved in the design and implementation of a database system.
- Transform an information model into a relational database schema and to use a data definition language and/or utility to implement the schema using a DBMS.
- Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.
- Understand the concepts of constraints, views, concurrency control, deadlock

Module No.	Unit No.	Topics	Hrs.
1.0	110.	Introduction to Databases and Transactions	02
	1.1	Introduction to databases, History of database system, Benefits of Database system over file system, relational databases, database architecture, transaction management	
2.0		Data Models	06
	2.1	The importance of data models, Basic building blocks, Business rules, Evolution of data models (hierarchical, Network, Relational, Entity relationship and object model), Degrees of data abstraction.	
3.0		Database Design, ER-Diagram and Unified Modeling Language	10
	3.1	Database design and ER Model: overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational Schemas, Introduction to UML Relational database model: Logical view of data, keys, integrity rules. Relational Database design: features of good relational database design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF).	
4.0		Relational Algebra and Calculus	10
	4.1	Relational algebra: introduction, Selection and projection, set operations, renaming, Joins, Division, syntax, semantics. Operators, grouping and ungrouping, relational comparison. Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra, computational capabilities.	
5.0		Constraints, Views and SQL	10
	5.1	What is constraints, types of constrains, Integrity constraints, Views: Introduction to views, data independence, security, updates on views, comparison between tables and views SQL: data definition, aggregate function, Null Values, nested sub queries, Joined relations. Triggers.	
6.0		Transaction management and Concurrency control	10
	6.1	Transaction management: ACID properties, serializability and concurrency control, Lock based concurrency control (2PL, Deadlocks), Time stamping methods, optimistic methods, database recovery management.	
		Total	48

- 1. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", Fifth Edition McGraw-Hill
- 2. Rob, Coronel, "Database Systems", Seventh Edition, Cengage Learning.
- 3. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database System", Seventh Edition, Person.
- 4. G. K. Gupta: "Database Management Systems", McGraw Hill.

Reference Books:

- 1. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 2. P.S. Deshpande, "SQL and PL/SQL for Oracle 11g, Black Book", Dreamtech Press
- 3. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

E-Resources:

- 1. https://www.tutorialspoint.com/dbms/index.htm
- 2. https://www.studytonight.com/dbms/
- 3. https://beginnersbook.com/2015/04/dbms-tutorial/
- 4. https://www.w3schools.in/dbms/
- 5. <u>https://www.tutorialcup.com/dbms</u>

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Т	Teaching Scheme (Hrs.) Theory Practical Tutorial			Credits Assigned				
		Theory				Practi	cal Tutor	ial	Total	
ECCDLO	Audio	04			04				04	
6024	Processing									
Examination Scheme										
Subject	Subject		nation Sch							
Code	Subject Name	Inte	ernal asses			Term	Practical	Oral	Total	
Coue	Name	Test 1	Test2		End Sem. Exam	Work	& Oral	Ula	Totai	
ECCDLO 6024	Audio Processing	20	20	20	80				100	

Prerequisites

• Signal System

Course objectives:

- To understand basic concepts and methodologies for the analysis and modeling of speech signal.
- To characterize the speech signal as generated by a speech production model.
- To understand the mechanism of speech and audio perception.
- To understand the digital representation of the speech waveform.
- To perform the analysis of speech signal using STFT.
- To extract the information of the speech or audio signals.
- To provide a foundation for developing application in this field.

Course outcomes:

- Demonstrate advanced Knowledge in Digital model representation of speech signal.
- Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
- Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
- Formulate and design a system for speech recognition and speaker recognition.
- Acquired knowledge about audio and speech signal estimation and detection.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction	06
	1.1	Review of digital signal and systems, Transforms representations of signal and systems, Sampling Theorem, Goertzel algorithm, Chirp algorithm.	
2.0		Digital Models for Speech signals	06
	2.1	Speech production and acoustic tube modeling, acoustic phonetics, anatomy, and physiology of the vocal tract and ear, hearing and perception.	
3.0		Digital Representations of the Speech Waveform	08
	3.1	Sampling speech signals, Instantaneous quantization, Adaptive quantization, Differential quantization, Delta Modulation, Differential PCM, Comparison of systems, Direct digital code conversion.	
4.0		Time Domain Models for Speech Processing	12
	4.1	Time dependent processing of speech, Short time energy and average magnitude, Short time average zero crossing rate, Speech V/S silence discrimination using energy & Zero crossings, Pitch period estimation, Short time autocorrelation function, Short time average magnitude difference function, Pitch period estimation using autocorrelation function, Median smoothing.	
5.0		Short time Fourier Transform	10
	5.1	Introduction- Definition and Properties, Fourier Transform Interpretation ,Linear Filtering Interpretation ,Sampling rates of X_n (e^{jw}) in Time and Frequency ,Filter Bank Summation Method of Short -Time Synthesis ,Overlap Addition Method for Short -Time Synthesis.	
6.0		Speech and Audio Processing	06
	6.1	Vocoder- Voice excited channel vocoder, Voice excited and error signal excited LPC vocoders. Adaptive predictive coding of speech, Auditory Modeling. Audio signal processing for Music applications. Speech recognition pattern comparison techniques, Artificial Neural Network.	
		Total	48
	1	1	I

- 1. L R Rabiner and S W Schafer, "Digital processing of speech signals", Pearson Education, 2009.
- 2. L R Rabiner, B H Juang, B Yegnanarayana, "Fundamentals of speech Recognition", Pearson Education, 1993.

Reference Books

- 1. Thomas F Quateri, "Discrete Time Speech Signal Processing "Pearson Edition, 2006.
- 2. Ben Gold and Nelson Morgan, "Speech & Audio Signal Processing", wiley, 2007.
- 3. Douglas O Shaughnessy, "Speech Communications", 2nd Edition, Oxford university press, 2000.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL601	Microcontrol ler & Applications Laboratory		02			1		1	

	Subject Name	Examination Scheme								
Subject Code		Theory Marks								
		Internal assessment			End Sem.	Term Work	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Exam Work	& Oral	01ui	I Otai	
ECL601	Microcontrol ler & Applications Laboratory					25	25		50	

Suggested Experiment List

- 1. Perform Arithmetic and Logical Operations
- 2. Transfer of data bytes between Internal and External Memory
- 3. Experiments based on General Purpose Input-Output, Timers, Interrupts, Delay, etc
- 4. Interfacing of LED, LCD, Stepper Motor, UART

Mini project based on any application related to 8051 or ARM7 can be implemented.

Note: Mini Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme Credits Assign			signed	
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL602	Computer		02			1		1
	Communicati							
	on Network							
	Laboratory							

			Examination Scheme									
Subject	Subject		The									
Subject Code	Subject Name	Internal assessment			End	Term	Practical & Oral	Oral	Total			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Ulai	10141			
		I est I	10312	1 and Test 2	Exam							
ECL602	Computer					25	25		50			
	Communicatio											
	n Network											
	Laboratory											

Suggested Experiment List

- 1. Create a Virtual Network using NETKIT emulator and use networking commands like route, arp, netstat, traceroute, ping on created topology.
- 2. To study installation and configuration of NS 2.35 simulator.
- 3. Design a connectionless and connection oriented network topology for static routing and dynamic routing with the help of NS2 simulator.
- 4. To study three way handshaking process as well as working process for connection oriented Protocols like FTP, TELNET and analysing packets generated by using packet capturing tool like tcpdump
- 5. To implement stream socket that can serve multiple clients at the same time.
- 6. To study requirements and scope of Subnetting and Network Translation by using Netkit Emulator.
- 7. Case Study: To study installation of linux operating system by using DHCP, TFTP and any repository server like HTTP, FTP or NFS.

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECL603	Antenna & Radio Wave Propagation Laboratory		02			1		1		

			Examination Scheme									
Subject	Subject	Theory Marks										
Code	Name	Internal assessment			End Sem.	Term	Practical & Oral	Oral	Total			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	n	& Oral	Ulai	I Utar			
ECL603	Antenna & Radio Wave Propagation Laboratory					25	25		50			

Suggested Experiment List

- Introduction to different Antenna parameters and its importance
- Introduction to Different Antenna Types
- Study of Radiation pattern of dipole, folded dipole and Monopole antenna
- Study of Antenna Arrays N element array for given angle, Parametric study for various arrays parameters
- Study of Yagi-Uda Antenna
- Study of Aperture Antennas Horn / Reflector Antennas
- Design, implementation and Pattern measurement of Regular shape MSA
- Case Study of Recent reported variations of Antenna types (Paper from reputed journal is to be referred and thoroughly study and present the report, maximum four students per group)

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL604	Image Processing and Machine Vision Laboratory		02			1		1	

				Examir	nation Sch	eme			
Subject	Subject		Theory Marks						
Code	Name	Inte	essment	End Sem.	Term Work	Practical & Oral	Oral	Total	
Couc		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sell. Exam	Work	& Oral	Ulai	Total
ECL604	Image					25	25		50
	Processing								
	and Machine								
	Vision								
	Laboratory								

Suggested Experiment List

• At least 8 programs written in C/MATLAB software

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6021	Digital VLSI Design Laboratory		02			1		1	

	Subject Name		Examination Scheme									
Subject			Theory Marks									
Code		Internal assessment End Sem.				Term	Practical & Oral	Oral	Total			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sein. Exam	Work	& Oral		I Utal			
ECLDLO	Digital VLSI					25			25			
6021	Design											
	Laboratory											

Suggested Experiment List

- 1. At least **08** experiments covering entire syllabus of Digital VLSI should be set to have well predefined inference and conclusion.
- **2.** The first 05 experiments as described below can be conducted by using Free or Professional tools
 - 01 experiments on Layouts of NAND and NOR gates to understand design rules
 - 01 experiment on Layout design of logical expression
 - 01 experiments on NAND/NOR gate implementation using at least 03 design styles
 - 02 experiment on Multiplexer/Decoder/Flip flop/Memory etc design
- 3. Last **03** experiments on HDL

Note: Small Project can be considered as a part of term-work. Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6022	Radar Engineering Laboratory		02			1		1	

	Subject	Examination Scheme									
Subject		Theory Marks									
Subject Subject Code Name		Internal assessment End Sem.				Term	Practical & Oral	Oral	Total		
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam		& Oral		IUtai		
ECLDLO	Radar					25			25		
6022	Engineering										
	Laboratory										

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECLDLO 6023	Database Management System Laboratory		02			1		1		

	Subject		Examination Scheme									
Subject		Theory Marks										
Code	Subject Name	Internal assessment			End Sem.	Term	Practical & Oral	Oral	Total			
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam		& Oral	Olui	Tuai			
ECLDLO	Database					25			25			
6023	Management System Laboratory											

Suggested Experiment List

- Design a Database and create required tables. For e.g. Bank, College Database
- Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- Write a sql statement for implementing ALTER, UPDATE and DELETE
- Write the queries to implement the joins
- Write the query for implementing the following functions: MAX (), MIN (), AVG (), COUNT ()
- Write the query to implement the concept of Integrity constrains
- Write the query to create the views
- Perform the queries for triggers
- Perform the following operation for demonstrating the insertion, updation and deletion using the referential integrity constraints
- Write the query for creating the users and their role

List of Mini projects:

Note: These are few examples of mini projects; teachers may prepare their own list.

- 1. Library Management System
- 2. Hospital Management System
- 3. Pharmacy Management System
- 4. Human Resource Database Management System in Java
- 5. Student Database Management System
- 6. Employee Management System
- 7. Inventory Control Management Database

- 8. Pay Roll Management System
- 9. Railway System Database
- 10. Airline Reservation System
- 11. Blood Donation System
- 12. School Management System

Online Repository Sites:

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6024	Audio Processing Laboratory		02			1		1	

Subject Code	Subject Name	Examination Scheme								
		Theory Marks								
		Inte	ernal ass	essment	End Sem.	Term Work	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam					
ECLDLO	Audio					25			25	
6024	Processing									
	Laboratory									

Note: Small Project can be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.